The Minimal Cardinality Where the Reznichenko Property Fails

نویسنده

  • BOAZ TSABAN
چکیده

A topological space X has the Fréchet-Urysohn property if for each subset A of X and each element x in A, there exists a countable sequence of elements of A which converges to x. Reznichenko introduced a natural generalization of this property, where the converging sequence of elements is replaced by a sequence of disjoint finite sets which eventually intersect each neighborhood of x. In [5], Kočinac and Scheepers conjecture: The minimal cardinality of a set X of real numbers such that Cp(X) does not have the weak Fréchet-Urysohn property is equal to b. (b is the minimal cardinality of an unbounded family in the Baire space N). We prove the Kočinac-Scheepers conjecture by showing that if Cp(X) has the Reznichenko property, then a continuous image of X cannot be a subbase for a non-feeble filter on N.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Pytkeev Property in Spaces of Continuous Functions

Answering a question of Sakai, we show that the minimal cardinality of a set of reals X such that Cp(X) does not have the Pytkeev property is equal to the pseudo-intersection number p. Our approach leads to a natural characterization of the Pytkeev property of Cp(X) by means of a covering property of X, and to a similar result for the Reznichenko property of Cp(X).

متن کامل

The Reznichenko Property and the Pytkeev Property in Hyperspaces

We investigate two closure-type properties, the Reznichenko property and the Pytkeev property, in hyperspace topologies.

متن کامل

On Property (A) and the socle of the $f$-ring $Frm(mathcal{P}(mathbb R), L)$

For a frame $L$, consider the $f$-ring $ mathcal{F}_{mathcal P}L=Frm(mathcal{P}(mathbb R), L)$. In this paper, first we show that each minimal ideal of $ mathcal{F}_{mathcal P}L$ is a principal ideal generated by $f_a$, where $a$ is an atom of $L$. Then we show that if $L$ is an $mathcal{F}_{mathcal P}$-completely regular frame, then the socle of $ mathcal{F}_{mathcal P}L$ consists of those $f$...

متن کامل

Line graphs associated to the maximal graph

Let $R$ be a commutative ring with identity. Let $G(R)$ denote the maximal graph associated to $R$, i.e., $G(R)$ is a graph with vertices as the elements of $R$, where two distinct vertices $a$ and $b$ are adjacent if and only if there is a maximal ideal of $R$ containing both. Let $Gamma(R)$ denote the restriction of $G(R)$ to non-unit elements of $R$. In this paper we study the various graphi...

متن کامل

Solis Graphs and Uniquely Metric Basis Graphs

A set $Wsubset V (G)$ is called a resolving set, if for every two distinct vertices $u, v in V (G)$ there exists $win W$ such that $d(u,w) not = d(v,w)$, where $d(x, y)$ is the distance between the vertices $x$ and $y$. A resolving set for $G$ with minimum cardinality is called a metric basis. A graph with a unique metric basis is called a uniquely dimensional graph. In this paper, we establish...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008